علم نانوتكنولوژي چيست؟
نانوتكنولوژي به عنوان يك فناوري قدرتمند نوين، توانايي ايجاد انقلاب و تحولات عظيم را در سيستم تامين مواد غذايي و كشاورزي در گستره جهاني دارد. نانوتكنولوژي قادر است كه ابزارهاي جديدي را براي استفاده در بيولوژي مولكولي و سلولي و همچنين توليد مواد جديدي، براي شناسايي اجرام بيماري زا معرفي نمايد و بنابراين چندين ديدگاه مختلف در نانوتكنولوژي وجود دارد كه مي تواند در علوم كشاورزي و صنايع غذايي، كاربرد داشته باشد. علم نانوتكنولوژي چيست؟ انجمن ملي نوبنياد نانوتكنولوژي كه يك نهاد دولتي در كشور امريكا مي باشد ، واژه نانوتكنولوژي را چنين توصيف مي كند: "تحقيق و توسعه هدفمند، براي درك و دستكاري و اندازه گيريها مورد نياز در سطح موادي با ابعاد در حد اتم"، مولكول و سوپرمولكولها را نانوتكنولوژي مي گويند. اين مفهوم با واحدهايي از يك تا صد نانومتر، همبستگي دارد. دراين مقياس خصوصيات فيزيكي، بيولوژيكي و شيميايي مواد تفاوت اساسي با يكديگر دارند و غالبا اعمال غير قابل انتظار از آنها مشاهده مي شود. در سيستم كشاورزي امروزي، اگردامي مبتلا به يك بيماري خاص شود، مي توان چند روز و حتي چند هفته يا چند ماه قبل علائم نامحسوس بيماري را شناسايي كنند و قبل از انتشار و مرگ و مير كل گله، دامدار را براي اخذ تصميمات مديريتي و پيشگيري كننده آگاه كند و بنابراين مي توان نسبت به مقابله با آن بيماري اقدام نمايد. نانوتكنولوژي به موضوعاتي در مقياس هم اندازه با ويروسها و ساير عوامل بيماري زا مي پردازد و بنابراين پتانسيل بالايي را براي شناسايي و ريشه كني عوامل بيماري زا دارد. نانوتكنولوژي امكان استفاده از سيستمهاي آزاد كننده داروئي را كه بتواند به طور طولاني مدت فعال باقي بماند، فراهم مي كند. سطوح انتخابي بيولوژيكي، محيطي هايي هستند كه عمده واكنشهاي و فعل و انفعالات بيولوژيكي و شيميايي در آن محيط انجام مي شود. چنين سطوحي همچنين توانايي افزايش يا كاهش قدرت اتصال ارگانيزمها و ملكولهاي ويژه را دارد. از جنبه هاي كاريردي استفاده از اين سطوح، طراحي سنسورها، كاتاليستها، و توانايي جداسازي يا خالص سازي مخلوطهاي بيومولكولها مي باشد. نانومولكولها موادي هستند كه اخيرا از طريق نانوتكنولوژي به دست آمده اند و يا در طبيعت موجودند و بوسيله اين ساختارها، امكان دستكاريهاي درسطح نانو و تنظيم و كاتاليز واكنشهاي شيميايي وجود دارد. نانو مواد از اجزاي با سايز بسيار ريز تشكيل شده اند و اجزا تشكيل دهنده چنين ساختارهايي بر خواص مواد حاصل در سطح ماكرو تاثير مي گذارد. ساختارهاي كروي توخالي (buckey balls ) كه با نام ديگر فلورن هم شناخته شده اند، مجموعه از اتمهاي كربن متحدالشكل به صورت كروي هستند كه در چنين ساختاري هر اتم كربن به سه اتم كربن مجاورش متصل شده. دانشمندان اكنون به خوبي مي دانند كه چگونه يك چنين ساختاري را به وجود آورند و كاربردهاي بيولوژيكي آن امروزه كاملا شناخته شده است. از جمله كاربردهاي چنين ساختارهايي براي رها سازي دارو يا مواد راديواكتيو در محلهاي مبتلا به عوامل بيماريزا مي باشد. ايده استفاده از60 اتم كربن به جاي 80 اتم، ساختارهاي توخالي را براي آزاد سازي دارو فراهم مي كند. هدف از اين كار در نهايت رسيدن به گروهاي قابل انحلال پپتيدها در آب مي باشد كه نتيجتا اين مولكولها به جريان خون راه پيدا مي كنند. نانوتيوپها ساختارهاي توخالي ديگري هستند كه از دو طرف باز شده اند و گروههاي اتمي ديگري به آنها اضافه شده اند و يك ساختار شش گوشه را تشكيل مي دهند. نانوتيوپها مي توانند به عنوان يك ورقه گرافيت در نظر گرفته شوند كه به دور يك لوله پيچيده شده اند. كاربرد پلي مرهاي سنتزي در داروسازي پيشرفتهاي چشمگيري داشته است. سبكي، نداشتن آثار جانبي و امكان شكل دهي پلي مرها، كاربرد آنها را در زمينه پزشكي و دامپزشكي افزايش داده است. در روشهاي دارورساني مدرن، فرآورده شكل دارويي موثر خود را با يك روند مشخص شده قبلي براي مدت زمان معلوم بطور سيستماتيك به عضو هدف آزاد مي كند. پليمرها نه تنها به عنوان منابع ذخيره دارو و غشا و ماتريكس هاي نگهدارنده عمل مي كنند بلكه مي توانند سرعت انحلال آزاد سازي و تعادل دفع و جذب آزاد را در بدن كنترل كنند. نانوشلها يك نوع جديد از نانوذرات هستند كه از هسته دي الكتريك مانند سيليكا تشكيل شده اند كه با يك لايه فلزي فوق العاده نازك(به عنوان مثال طلا) پوشش داده شده اند. نانوشلهاي طلا، داراي خواص فيزيكي مشابه به آنهايي هستند كه از كلوئيدها طلا ساخته شده اند. پاسخهاي نوري نانوشلهاي طلا به طور قابل توجهي به اندازه نسبي هسته نانوذرات و ضخامت لايه طلا بستگي دارد. دانشمندان قادرند نانوشلهايي را بسازند كه ملكولهاي آنتي ژنها بر روي آنها سوار شوند و در مجموع سلولهاي سرطاني و تومورهاي موجود را تحت تاثير قرار دهند. اين ويژگي مخصوصا در رابطه با نانوشلها مي باشد كه اين ساختارها قادرند فقط تومورهاي موجود را تحت تاثير قرار دهند و سلولهاي مجاور تومور دست نخورده باقي مي ماند. |
وضعيت ابتدايي
فناوري نانو تا 20 سال آينده، همانند فناوري اطلاعات در 20 سال گذشته، فناوري توانمندساز خواهد بود. هر شركتي در دنيا به وسيله اين فناوري و از طريق همگرايي فناوريهاي: نانو، زيستي، تشخيصي و اطلاعات، تغيير خواهد يافت. فناوري نانو، فناوري ميانبخشي است و تمام فناوريها و بازارهاي شناخته شده كنوني را تغيير داده و يا از نو تعريف خواهد كرد. اين فناوري، در كوتاهمدت باعث تغيير و كامل شدن علوم زيستي، داروسازي، روشهاي تشخيص، فناوري پزشكي، غذا، فناوري محيطزيست، آب، انرژي، الكترونيك، مهندسي مكانيك و... خواهد شد .
· در حدود سال 1950 ميلادي ، فيزيکدان معروف آمريکايي ، پروفسور ريچارد فاينم پيشنهاد ساخت يک موتور الکتريکي با ابعاد کمتر از 1.64 اينج را داد و براي اولين بار کسي که موفق به ساخت آن شود جايزه 1000 دلاري تعيين نمود. سرانجام ويليام مک ليلان با زحمت فراوان توانست بوسيله يک انبرک دستي و يک ميکروسکوپ اين کار را به انجام برساند. در واقع هدف فاينمن از اين کار ايجاد انگيزه در موسسات آموزشي و تحقيقاتي بود تا توجه آنها را به دنياي ميکروها و نانوها جلب کند.
فاينمن براي اولين بار و بطور جدي اين بحث را در سال 1960 و در تکنولوژي کاليفرنيا (Caltech) طي يک سخنراني با عنوان (There is plenty of 200m at the Bottom) مطرح کرد. در طي اين سخنراني فاينمن طريقه نگارش 24 جلد دايره المعارف Britanica را به صورت تئوري بر نوک يک سوزن توضيح داد و بدين ترتيب شاخه جديدي از دانش پا به عرصه ظهور گذاشت.
چقدر کوچک؟
تا به اينجا متوجه شديم که علم فناوري نانو که مورد بحث ما ميباشد، در مورد بسيار کوچکها صحبت ميکند. اما ميخواهيم بدانيم چقدر کوچک؟ يک نانو عبارتست از 9-10 متر ، اگر بخواهيم اين اندازه را در ذهن خود مجسم کنيم بايد بدانيم که اگر تعداد يک ميليون ذره يک نانومتري را در کنار هم قرار دهيم تنها طولي برابر با يک ميليمتر بدست ميآيد. به صورت کاملا دقيق هنگامي که ما از ابعاد نانومتري صحبت ميکنيم. منظور ما ابعادي در اندازه اتمها و مولکولها ميباشد
هنگامي که درباره نانو فناوري شروع به جستجو و مطالعه کنيد، به موضوعات و مواد مختلفي بر ميخوريد مانند:"نانولولهها ، شبيه سازي مولکولي ، نانو داروها ، سلولهاي سوختي ، کاتاليزورها ، نانو ذرات و ..." ، بنابراين ممکن است نانو فناوري رشتهاي کاملا گسترده به نظر آيد که موضوعات آن ربط چنداني به هم ندارند. بطور کلي مطالعات نانو فناوري را ميتوان به سه دسته تقسيم کرد. اگر چه روشهاي تحقيقاتي در آنها با يکديگر متفاوت است، اما اين سه شاخه کاملا به يکديگر مرتبط هستند و پيشرفت در يکي از شاخهها ميتواند در شاخههاي ديگر نيز کاملا مؤثر باشد. اين سه شاخه عبارتند از:
1. نانوتکنولوژي مرطوب
اين شاخه به مطالعه سيستمهاي زندهاي ميپردازد که اساسا در محيطهاي آبي وجود دارند. در اين شاخه ساختمان مواد ژنتيکي ، غشاها و ساير ترکيبات سلولي در مقياس نانومتر مورد مطالعه قرار ميگيرد. پژوهشگران موفق شدهاند ساختارهاي زيستي فراواني توليد کنند که نحوه عملکرد آنها در مقياس نانويي کنترل ميشود. اين شاخه در برگيرنده علوم پزشکي ، دارويي و بطور کلي علوم و روشهاي مرتبط با زيست فناوري است.
2. نانوتکنولوژي خشک
اين شاخه از علوم پايه شيمي و فيزيک مشتق ميشود و به مطالعه تشکيل ساختارهاي کربني ، سيليکون و مواد غير آلي و فلزي ميپردازد. نکته قابل توجه اين است که الکترونهاي آزاد که در فناوري مرطوب موجب انتقال مواد و انجام واکنشها ميگردند، در فناوري خشک خصوصيات فيزیکی ماده را پدید میآورند. در نانو تکنولوژی خشک کاربرد مواد نانویی در الکترونیک ، مغناطیس و ابزارهای نوری مورد مطالعه قرار میگیرد. برای مثال طراحی و ساختن میکروسکوپهایی که بتوان با استفاده. از آنها مواد را در ابعاد نانومتر دید
· 3. نانوتکنولوژی محاسبهای
در بسیاری از مواقع ابزار آزمایشگاهی موجود برای انجام برخی از آزمایشها در مقیاس نانومتر مناسب نیستند و یا آنکه انجام این آزمایشها بسیار گران تمام میشود. در این حالت از رایانهها برای شبیه سازی فرآیندها و واکنشهای اتمها و مولکولها استفاده میشود. شناختی که بوسیله محاسبه بدست میآید، باعث میشود که زمان پیشرفت نانو تکنولوژی خشک به چند دهه کاهش یابد و البته تأثیر مهمی در نانو تکنولوژی مرطوب نیز خواهد داشت.
علم نانو در واقع يه علم خيلي غني هست كه به كمك اون ما ميتونيم توي زندگي تحولات خيلي وسيعي ايجاد كنيم.
به طور كلي نانو رو ميتونيم جهاني به شمار بياريم كه پر از وسايل اسرار اميزه البته اين موارد برا كسايي هست كه تازه از اين تكنولوژي اطلاعات به دست اوردن كه مطمينم علاقه مند اين تكنولوژي ميشن ولي در مورد اين مواد با اين ابعاد ميتونيم بگيم كه اين فيزيك پايه كه بيشترش رو كسايي مثل انيشتين پايه گذاري كردن براي اين مواد با اين ابعاد زياد كارامد نيست .
نانو واقعا ميتوني يه معجزه تو علم بشري باشه و يه انقلاب علمي به پا كنه چه تو زمينه ي فيزيك و چه تو زمينه ي شيمي و چه تو زمينه ي پزشكي به طور كلي اين علم خيلي كارامده و ازش ميتونيم توي بسياري از موارد استفاده كنيم.
نانو تكنولوژي با استفاده از ساختارهاي ملكولي پيچيده مانند سلول انسان و 100 برابر محكم تر از فولاد, آغازگر يك تحول صنعتي خواهد بود.
به گزارش بخش خبر شبكه فن آوري اطلاعات ايران، به نقل ازجام جم آنلاين، اين تكنولوژي جديد, از طريق دستكاري اتم ها, محصولات جديد وروش ساخت آنها را تغيير مي دهد, به طوري كه مواد حاصل, كوچكتر, محكم و سبك باشند.
تاكنون تنها محصولات اندكي بر اين اساس توليد شده اند كه از آن جمله مي توان پارچه هاي مقاوم در برابر رنگ آميزي و بسته بندي هاي مواد غذايي تازه را نام برد كه وارد بازار شده اند. اما برخي دانشمندان پيش بيني مي كنند نانو تكنولوژي بالاخره تنها فن آوري باقي, خواهد بود.
به گفته جرج استفانو پالس, استاد مهندسي شيمي در انستيتوي تكنولوژي ماساچوست اين فن آوري فراگير خواهد شد. وي با انعكاس نظر ديگر طرفداران نانوتكنولوژي اظهار مي دارد كه كشورهاي صنعتي در همه جنبه هاي صنعت از اين علم بهره مي جويند.
يك نانو مقياس يك ميليونيم متر يا حدودا به اندازه 10 اتم هيدروژن است. و اين معادل با يك هشتادهزارم قطر موي انسان است.
اكنون دانشمندان به كمك ميكروسكپ هاي پيشرفته مي توانند اتم هاي مجزا را جايي كه مايلند, قرار دهند. كاربردهاي بالقوه نانو تكنولوژي بسيارند كه از آن جمله به كامپيوترهاي ميكروسكپي, آنتن هاي كشنده سرطان و موتورهاي غيرآلوده كننده ماشين ها مي توان اشاره كرد.
منافع نانوتکنولوژی چیست؟
مفهوم جدید نانوتکنولوژی آنقدر گسترده و ناشناخته است که ممکن است روی علم و تکنولوژی در مسیرهای غیرقابل پیش بینی تأثیر بگذارد. محصولات موجود نانوتکنولوژی عبارتند از: لاستیکهای مقاوم در برابر سایش که از ترکیب ذرات خاک رس با پلیمرها بدست آمدهاند، شیشههایی که خودبه خود تمیز میشوند، مواد دارویی که در مقیاس نانو ذرات درست شدهاند، ذرات مغناطیسی باهوش برای پمپهای مکنده و روان سازها ، هد دیسکهای لیزری و مغناطیسی که با کنترل دقیق ضخامت لایهها از کیفیت بالاتری برخوردارند، چاپگرهای عالی با استفاده از نانو ذرات با بهترین خواص جوهر و رنگ دانه و ... .
قابلیتهای محتمل تکنیکی نانوتکنولوژی
1. محصولات خود_اسمبل
2. کامپیوترهایی با سرعت میلیاردها برابر کامپیوترهای امروزی
3. اختراعات بسیار جدید (که امروزه ناممکن است(
4. سفرهای فضایی امن و مقرون به صرفه
5. نانوتکنولوژی پزشکی که در واقع باعث ختم تقریبی بیماریها ، سالخوردگی و مرگ و میر خواهد شد.
6. دستیابی به تحصیلات عالی برای همه بچههای دنیا
7. احیاء و سازماندهی اراضی
برخی کاربردها
مدلسازی مولکولی و نانوتکنولوژی
در سازمان دهی و دستکاری مواد در مقیاس نانو ، لازم است تمامی ابزار موجود جهت افزایش کارایی مواد و وسایل بکار گرفته شود. یکی از این ابزار ، شیمی تحلیلی ، خصوصا مدل سازی مولکولی و شبیه سازی است. امروزه ابزار تحقیقاتی فراگیری مانند روشهای شیمی تحلیلی مزیتهای فراوانی نسبت به روشهای تجربی دارند. میهیل یورکاز شرکتContinental Tire North America میگوید:"روشهای تجربی مستلزم بهرهگیری از نیروی انسانی ، شیمیایی ، تجهیزات ، انرژی و زمان است. شیمی تحلیلی این امکان را برای هر فرد مهیا میسازد که فعالیتهای شیمیایی چندگانهای را در 24 ساعت شبانه روز انجام دهد. شیمیدانها میتوانند با انجام آزمایشها توسط رایانه ، احتمال فعالیتهای غیرمؤثر را از بین ببرند و گستره احتمالی موفقیتهای آزمایشگاهی را وسعت دهند.
نتیجه نهایی این امر ، کاهش اساسی در هزینههای آزمایشگاهی (مانند مواد ، انرژی ، تجهیزات) و زمان است." از طرف دیگر ، در شیمی تحلیلی سرمایه گذاری اولیه جهت تهیه نرمافزار و هزینههای وابسته از جمله سختافزار جدید ، آموزش و تغییرات پرسنل بسیار بالا خواهد بود. ولی با بکار گیری هوشمندانه این ابزار میتوان هریک از هزینههای اولیه را نه تنها از طریق صرفهجویی در هزینه آزمایشگاه بلکه بوسیله فراهم نمودن دانشی که منجر به بهینه سازی فرآیندها و عملکردها میشود، جبران ساخت.
این موضوع برای شیمیدانها بسیار مناسب است، ولی روشهای شبیهسازی چطور میتوانند برای نانوتکنولوژیستها مفید واقع شود؟ محدودیتهای آزمایشگر در مقیاس نانو ، زمانی آشکار میشود که شگفتی جهان دانشمندان نظری وارد عمل میشود. در اینجا هنگامی که دانشمندان قصد قرار دادن هر یک از اتمها را در محل مورد نظر دارند قوانین کوانتوم وارد صحنه میشود. پیشبینی رفتار و خواص در محدودهای از ابعاد برای نانوتکنولوژیستها حیاتی است.
مدلسازی رایانهای با بکارگیری قوانین اولیه مکانیک کوانتوم و یا شبیهسازیهای مقیاس میانی ، دانشمندان را به مشاهده و پیشبینی رفتار در مقیاس نانو و یا حدود آن قادر میسازد. مدلهای مقیاس میانی با بکارگیری واحدهای اصلی بزرگتر از مدلهای مولکولی که نیازمند جزئیات اتمی است، به ارائه خواص جامدات ، مایعات و گازها میپردازند. روشهای مقیاس میانی در مقیاسهای طولی و زمانی بزرگتری نسبت به شبیهسازی مولکولی عمل میکنند. میتوان این روشها را برای مطالعه مایعات پیچیده ، مخلوطهای پلیمر و مواد ساختهشده در مقیاس نانو و میکرو بکار برد.
محدودیتهای این روشها چیست؟
در حالیکه امروزه ابزار مدلسازی در سطح کوانتومی و مقیاس میانی به خوبی توسعه یافتهاند، همچنان محدودیتهایی در این عرصه وجود دارد. برای مثال کاربردهایی در زمینه وسایل الکترونیک مستلزم انجام محاسبات مکانیک کوانتوم برای تعداد اتمهایی بیش از روشهای حاضر میباشد که بیش از توان عملیاتی منابع محاسبهگر فعلی است. همچنین مدلسازی کل وسایل امکانپذیر نیست، بویژه عملکردها و خواص آنها.
منابع :
http//: pet.blogfa.com
http://yazdphysics.parsiblog.com/
مقدمه ای بر نانو تکنولوژی، دکتر علی شکوه فر و مهندس کسری مومنی
[1] دانشجوی کارشناسی ارشد مدیریت آموزشی
علی جباری دکتری مدیریت آموزشی